Top Mass Determinations at Hadron Colliders

André H. Hoang

University of Vienna

Please refer to EF03 Meeting September 10 2020 and arXiv:2004.12915 for more details.

.. not just the heaviest SM particle

- Top quark: heaviest known particle
- Most sensitive to the mechanism of mass generation
- Peculiar role in the generation of flavor.
- Top might not be the SM-Top, but have a non-SM component.
- Top as calibration tool for new physics particles (SUSY and other exotics)
- Top production major background it new physics searches
- One of crucial motivations for New Physics

- Very special physics laboratory: Γ_t≫Λ_{QCD}
 - o Top treated a particle: p_T , spin, σ_{tot} , σ (single top), σ (tt+X),.. → $q \gg \Gamma_t$
 - o Quantum state sensitive low-E QCD and unstable particle effects: m_t , endpoint regions \rightarrow q \sim Γ_t
 - o Multiscale problem: p_T , $m_t \gg \Gamma_t \gg \Lambda_{QCD}$, . . . (depends on resolution scale of observable)

Why a Precision Top Mass is Important

Aims:

m_{top} wanted!

M_{top} is a renormalized QCD parameter!

- Reduce error in m_{top}^{MC}
- Improve / understand better MC
- Clarify mass scheme m_{top}^{MC}!

Top Mass Measurements

Most precise method: Direct Reconstruction

kinematic mass determination

Determination of the best-fit value of the Monte-Carlo top quark mass parameter

- ⊕ High top mass sensitivity
- → Precision of MC?
- ⊖ Meaning of m_t^{MC} ?

VALUE (GeV) DOCUMENT ID COMMENT 172.76± 0.30 OUR AVERAGE Error includes scale factor of 1.2. 1 AABOUD $172.69 \pm 0.25 \pm 0.41$ 19AC ATLS 7, 8 TeV ATLAS combination ² SIRUNYAN 19AP CMS $172.26 \pm 0.07 \pm 0.61$ lepton+jets, all-jets channels $172.33\pm 0.14^{+}_{-}0.66$ ³ SIRUNYAN 19AR CMS dilepton channel ($e\mu$, 2e, 2μ) $172.95 \pm 0.77 + 0.97 \\ 0.93$ ⁴ SIRUNYAN 17L CMS t-channel single top production ⁵ KHACHATRY...16ak CMS $172.44 \pm 0.13 \pm 0.47$ 7, 8 TeV CMS combination ⁶ TEVEWWG $174.30 \pm 0.35 \pm 0.54$ TEVA Tevatron combination

Mass Extraction and Renormalization Schemes

The Principle of Top Mass Determinations

- Top quark is not a physical particle ("colored parton")
- Top mass defined from theoretical prescriptions (renormalization schemes)
- Different schemes are related by a perturbative series.

$$m_t^A - m_t^B = \sum_{n=1}^{\infty} c_n \alpha_s^n(\mu)$$

Parton level cross section formally scheme-invariant, but can be practically scheme-dependent due to truncation

$$\hat{\sigma}(Q, m_t^A, \alpha_s(\mu), \mu; \delta m^A) = \hat{\sigma}(Q, m_t^B, \alpha_s(\mu), \mu; \delta m^B)$$

For comparison with exp. data one has to account for non-perturbative corrections

$$\sigma^{\exp} = \hat{\sigma}(Q, m_t^X, \alpha_s(\mu), \mu; \delta m^X) + \sigma^{NP}(Q, \Lambda_{QCD})$$

Typically at LHC:
$$\sigma^{\rm NP} \, \sim \, \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^n \, , \quad n=1 \, . \label{eq:sigma}$$

Linear effects always arise from color neutralization processes.

→ High precision control over soft partonic and NP effects needed when mass sensitivity generated by small dynamical scales

Mass Extraction and Renormalization Schemes

- Parton level cross section and NP corrections MUST be separately consistent with QCD so that the top quark mass (as well as $\alpha_S(Q)$) can be determined reliably!
 - → otherwise systematic bias: model instead of field theory parameters
- Which mass scheme is best? \rightarrow Consider analogy to strong coupling α_S
 - Relevant dynamical scale $Q \Rightarrow \alpha_S(Q)$ frequently best choice (MSbar)
 - All quantum corrections to quark-gluon interactions from scales above Q are absorbed into $\alpha_S(Q) \to IR$ -save definition of strong coupling
 - Multiple scale problems: factorization allows to make adequate scale choices

We seek for a scale-dependent mass scheme $m_t(Q)$ with properties similar to the strong coupling $\alpha_S(Q)$.

- Multi-scale issue:
 - In general high mass sensitivity is associated with QCD dynamics at a low scale
 - → typically: scale ~ width of distribution

Mass Extraction and Renormalization Schemes

Top Pole mass

- Theoretical precision limit: ~ 120 250 MeV (pole mass renormalon)
- Most codes naturally in this scheme
- Scale independent

<u>Top Mass Renormalization Schemes (renormalon-free running masses)</u>

- Theoretical precision limit: ~ 10 20 MeV
- Theoretical work needed to implement scheme change
- Scale-dependent

MS mass:

Adequate for total cross sections, production rates (scales above m_t)

MSR mass:

Adequate for thresholds, resonances, kinks (scales below m_t)

- C++ / Mathematica / Python package
- All common mass schemes supported
- All known corrections implemented

Release shortly arXiv: 2101:xxx

Status of Top Mass Determinations at the LHC

Direct Measurements:

→ 1st path to make progress

- Template method (ATLAS), matrix element/ideogram method (CMS)
- Based on highly top mass sensitive distributions (M_{lb-jet}, m_t^{reco}, etc) that are dominated by parton shower and hadronization model and cannot be systematically improved by NLO or NNLO matching.

(Mazitelli etal. arXiv:2012.14267)

Problem: How is m_t^{MC} related to field theory mass schemes?
 (Top mass interpretation problem)

Better theoretical understanding of MC event generators

needed! → work in progress (will not be resolved quickly,

comparable in complexity to the task to develop NLL precise MC generators)

See talk at EF03, Sept 10, 2020 and arXiv:2004.12915

Status of Top Mass Determinations at the LHC

"Pole Mass Measurements":

- Based on total and differential cross section for which the parton level calculation can be done reliably at NLO or NNLO/NNLL → mass scheme under control
- Called "pole mass measurements" only because theorists used pole mass scheme for their calculations. → misleading!

Better: Measurements of m_t in well-defined scheme

Total inclusive cross section:

$$m_t^{\text{pole}} = 172.9_{-2.6}^{+2.5} \,\text{GeV}$$
 (ATLAS, 7 and 8 TeV data)
 $m_t^{\text{pole}} = 173.8_{-1.8}^{+1.7} \,\text{GeV}$ (CMS, 7 and 8 TeV data)
 $m_t^{\text{pole}} = 169.9_{-2.2}^{+2.0} \,\text{GeV}$ (CMS, 13 TeV data)

lower precision due to impact of norm uncertainties (strong additional correlation to pdfs, α_S)

→ reliable mass interpretation, but imprecise

CMS arXiv:1812.10505

Status of Top Mass Determinations at the LHC

Differential Cross Section Measurements:

→ 2nd path to make progress

- Recently also differential cross sections: M_{tt+jet}, M_{tt} + y(tt), lepton energies
 - → based on concrete theory improvable (FO) calculations (with mass scheme control)
 - → distributions elevate top mass sensitivity due to structures

```
M_{t\bar{t}} + y(t\bar{t}) : m_t^{\text{pole}} = 170.5 \pm 0.8 \,\text{GeV} \quad (\text{CMS})

M_{t\bar{t}+jet} : m_t^{\text{pole}} = 171.1^{+1.2}_{-1.1} \,\text{GeV} \quad (\text{ATLAS})

leptons : m_t^{\text{pole}} = 173.2 \pm 1.6 \,\text{GeV} \quad (\text{ATLAS})
```

Important questions to address:

- Reliability of FO parton level differential cross sections
- → Garzelli, Kemmler, Moch, Zenaiev 2009.07763

 Test pole mass versus running masses
 → Catani, Devoto, Grazzini, Kallweit, Mazzitelli 2005.00557
- Much more difficult (theory + experiment) than inclusive cross sections
 (Hard work needed: Do not expect easy competition with direct measurement)
- Recent studies:

Soft-dropped boosted top jet masses Lepton energy distribution (t-channel single top)

AHH, Mantry, Pathak, Stewart 1708.02586

→ Yuan, Gao, Gao 2007.15527

